If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x+x^2=96
We move all terms to the left:
4x+x^2-(96)=0
a = 1; b = 4; c = -96;
Δ = b2-4ac
Δ = 42-4·1·(-96)
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-20}{2*1}=\frac{-24}{2} =-12 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+20}{2*1}=\frac{16}{2} =8 $
| 3x−5=4 | | -10+15g=-40 | | 3(2-3x)=16-5x | | 4z+(3z+6)=90 | | X^6-7(x)^3+10=0 | | 2x^2+10x+25=5x^2 | | 2-y=4-2y | | (x+5)^2=0 | | 8x+12=12-15x | | 10-(2x-5)=6+4(3x+8) | | 4(3y-1)=40;y=-3 | | 2/x+1+2/x+4=4/x+4 | | 3x/4+2/4=x/2 | | 2(4x-3)+5=15 | | 5n-11n=0 | | 5/x-9=8/x+5 | | (5/y+2)=3y | | (n/6)-3=10 | | x+0.35x=170 | | 4.4=e+12 | | x(x+4)+4-6x=6(1-x)+(x+4)(x+1) | | 6x2-60x=0 | | 4x^-9x+5=0 | | 4x^2+49=9 | | 2d-3d=3 | | (2x+7)^2=9 | | 29-3x^2=-19 | | 1/3+2/2x+1=3/2x+1 | | 6x+180=90 | | 8-2x^2=-10 | | 48-x^2=32 | | 15-x^2=14 |